mirror of
https://git.um-react.app/um/um-react.git
synced 2025-11-28 11:33:02 +00:00
feat: added option to search closest ekey
This commit is contained in:
17
src/util/__tests__/levenshtein.test.ts
Normal file
17
src/util/__tests__/levenshtein.test.ts
Normal file
@@ -0,0 +1,17 @@
|
||||
import { closestByLevenshtein, levenshtein } from '../levenshtein';
|
||||
|
||||
test('levenshtein quick test', () => {
|
||||
expect(levenshtein('cat', '')).toStrictEqual(3);
|
||||
expect(levenshtein('', 'cat')).toStrictEqual(3);
|
||||
expect(levenshtein('cat', 'cat')).toStrictEqual(0);
|
||||
expect(levenshtein('cat', 'cut')).toStrictEqual(1);
|
||||
expect(levenshtein('kitten', 'sitting')).toStrictEqual(3);
|
||||
expect(levenshtein('tier', 'tor')).toStrictEqual(2);
|
||||
expect(levenshtein('mississippi', 'swiss miss')).toStrictEqual(8);
|
||||
});
|
||||
|
||||
test('closestByLevenshtein quick test', () => {
|
||||
expect(closestByLevenshtein('cat', ['cut', 'dog', 'bat'])).toStrictEqual('cut');
|
||||
expect(closestByLevenshtein('dag', ['dog', 'pumpkin'])).toStrictEqual('dog');
|
||||
expect(closestByLevenshtein('hello', ['jello', 'yellow', 'bello'])).toStrictEqual('jello');
|
||||
});
|
||||
77
src/util/levenshtein.ts
Normal file
77
src/util/levenshtein.ts
Normal file
@@ -0,0 +1,77 @@
|
||||
const textEncoder = new TextEncoder();
|
||||
|
||||
// translation of pseudocode from Wikipedia:
|
||||
// https://en.wikipedia.org/wiki/Levenshtein_distance#Iterative_with_two_matrix_rows
|
||||
export function levenshtein(str1: string, str2: string) {
|
||||
if (str1 === str2) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (str1.length === 0) {
|
||||
return str2.length;
|
||||
} else if (str2.length === 0) {
|
||||
return str1.length;
|
||||
}
|
||||
|
||||
// Convert them to Uint8Array to avoid expensive string APIs.
|
||||
const s = textEncoder.encode(str1.toLowerCase());
|
||||
const t = textEncoder.encode(str2.toLowerCase());
|
||||
const m = s.byteLength;
|
||||
const n = t.byteLength;
|
||||
|
||||
// create two work vectors of integer distances
|
||||
let v0 = new Uint32Array(n + 1);
|
||||
let v1 = new Uint32Array(n + 1);
|
||||
|
||||
// initialize v0 (the previous row of distances)
|
||||
// this row is A[0][i]: edit distance from an empty s to t;
|
||||
// that distance is the number of characters to append to s to make t.
|
||||
for (let i = 0; i <= n; i++) {
|
||||
v0[i] = i;
|
||||
}
|
||||
|
||||
for (let i = 0; i < m; i++) {
|
||||
// calculate v1 (current row distances) from the previous row v0
|
||||
|
||||
// first element of v1 is A[i + 1][0]
|
||||
// edit distance is delete (i + 1) chars from s to match empty t
|
||||
v1[0] = i + 1;
|
||||
|
||||
// use formula to fill in the rest of the row
|
||||
for (let j = 0; j < n; j++) {
|
||||
// calculating costs for A[i + 1][j + 1]
|
||||
const deletionCost = v0[j + 1] + 1;
|
||||
const insertionCost = v1[j] + 1;
|
||||
const substitutionCost = v0[j] + (s[i] === t[j] ? 0 : 1);
|
||||
v1[j + 1] = Math.min(deletionCost, insertionCost, substitutionCost);
|
||||
}
|
||||
|
||||
// copy v1 (current row) to v0 (previous row) for next iteration
|
||||
// since data in v1 is always invalidated, a swap without copy could be more efficient
|
||||
[v0, v1] = [v1, v0];
|
||||
}
|
||||
|
||||
// after the last swap, the results of v1 are now in v0
|
||||
return v0[n];
|
||||
}
|
||||
|
||||
export function closestByLevenshtein(str: string, candidates: string[]) {
|
||||
// Faster than pre-calculate all and pass scores to Math.min.
|
||||
const n = candidates.length;
|
||||
if (n === 0) {
|
||||
throw new Error('empty candidates');
|
||||
}
|
||||
|
||||
let lowestIdx = 0;
|
||||
let lowestScore = levenshtein(str, candidates[0]);
|
||||
|
||||
for (let i = 1; i < n; i++) {
|
||||
const score = levenshtein(str, candidates[i]);
|
||||
if (score < lowestScore) {
|
||||
lowestScore = score;
|
||||
lowestIdx = i;
|
||||
}
|
||||
}
|
||||
|
||||
return candidates[lowestIdx];
|
||||
}
|
||||
Reference in New Issue
Block a user